Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 654: 123960, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38447778

RESUMEN

Multidrug-resistant tuberculosis (MDR-TB) has posed a serious threat to global public health, and antimicrobial peptides (AMPs) have emerged to be promising candidates to tackle this deadly infectious disease. Previous study has suggested that two AMPs, namely D-LAK120-A and D-LAK120-HP13, can potentiate the effect of isoniazid (INH) against mycobacteria. In this study, the strategy of combining INH and D-LAK peptide as a dry powder formulation for inhalation was explored. The antibacterial effect of INH and D-LAK combination was first evaluated on three MDR clinical isolates of Mycobacteria tuberculosis (Mtb). The minimum inhibitory concentrations (MICs) and fractional inhibitory concentration indexes (FICIs) were determined. The combination was synergistic against Mtb with FICIs ranged from 0.25 to 0.38. The INH and D-LAK peptide at 2:1 mole ratio (equivalent to 1: 10 mass ratio) was identified to be optimal. This ratio was adopted for the preparation of dry powder formulation for pulmonary delivery, with mannitol used as bulking excipient. Spherical particles with mass median aerodynamic diameter (MMAD) of around 5 µm were produced by spray drying. The aerosol performance of the spray dried powder was moderate, as evaluated by the Next Generation Impactor (NGI), with emitted fraction and fine particle fraction of above 70 % and 45 %, respectively. The circular dichroism spectra revealed that both D-LAK peptides retained their secondary structure after spray drying, and the antibacterial effect of the combination against the MDR Mtb clinical isolates was successfully preserved. The combination was found to be effective against MDR Mtb isolates with KatG or InhA mutations. Overall, the synergistic combination of INH with D-LAK peptide formulated as inhaled dry powder offers a new therapeutic approach against MDR-TB.


Asunto(s)
Isoniazida , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Isoniazida/farmacología , Polvos/química , Péptidos Antimicrobianos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Aerosoles/química , Administración por Inhalación , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Inhaladores de Polvo Seco , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...